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EFFECTS OF ERRORS ON THE SIDE-LOBE LEVEL OF
A LOW-SIDE-LOBE ARRAY ANTENNA

INTRODUCTION

Low-side-lobe array antennas have received wide interest in recent years. Theoretically, one can
design an array antenna with any desired side-lobe level. However, in practice array errors and other
imperfections limit the side-lobe level. One question is then how low a side-lobe level one may achieve
in practice. This problem is essentially that of finding the effect of array errors on the array radiation
pattern. This effect has been analyzed extensively in the literature. Ruze [11 considered the effect on
the radiation pattern of random errors in the exciting currents. Bailin and Ehrlich [2] treated the physi-
cal errors which cause the random errors in the exciting currents. Gilbert and Morgan [3] treated the
effect on gain of random geometric errors in the general two-dimensional aperture. Elliot [4] further
treated the problem of tolerance for two-dimensional scanning antennas. Allen et al. [51 reviewed the
general problem; they did extensive study on all aspects of this problem.

In this report, the relationship between the side-lobe level and the array random errors will be
examined. In particular, the limitation on the side-lobe level as a function of the array errors will be
presented. Intuitively, one may see that this limitation must be a function of the desired side-lobe
level, the number of elements in the array, and the nature of these errors. Since these errors are gen-
erally random in nature, the results are in terms of probability distributions. Allen et al. [51 showed
that all array errors that result from feed, phase shifters, mechanical location, and the orientation of
radiating elements can be characterized by a phase error and an amplitude error for each element in the
array. The results of this study, therefore, are in terms of these errors. In the past, these errors have
generally been assumed to be statistically independent. However, there are cases for which errors in
many elements are not necessarily independent. For example, the same phase and amplitude in a row
or column feed network could feed to every element in a particular row or column, or in the case of
subarray configuration, the same error may propagate to every element in a particular subarray. These
errors are correlated in these groups of elements. The effects of these correlated errors will be also dis-
cussed.

STATISTICAL DISTRIBUTION OF ARRAY PATTERN

For simplification, linear arrays will be treated first. The array pattern of a linear array can be
represented by

P(O) = ,Aexp [-j(21T nd/X) (sin6 - sin (1)
n

where 0 is the angle of incidence of a plane wave on the array and 00 is the beam pointing angle. Ele-
ment spacing d is assumed to be uniform. We further define

A = (21Td/X) (sin0 - sin 0o). (2)

Equation (1) then becomes

P (A) = A,, exp (jnA). (3)
n

For radiation in real space, p. is constrained so that

J.u I K 21T. (4)
Manuscript submitted March 13, 1981.
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Due to mechanical and electrical errors in the array, the array pattern becomes

Go = ,An (1 + 8) exp (iO") exp (jay), (5)

where 8 n is the amplitude error in percent and 4 n is the phase error. These errors vary from element
to element and are random in nature. For simplification, we assume that these errors have a known
probability density function. Because of randomness of these errors, G (u) is a random complex func-
tion which is the sum of many random variables. Each of these random variables can be represented as

Pn (p) = (1+8") exp(i4',,) exp(jnp.)

(6)

= XI' + A.n

These random variables are independent and have the same probability density function. The
array pattern is hence a random function of the sum of many random variables, so that

Go(A) = g (u) + jg2(A)
= JAJX +jn Yns 7

=ZAPIXPI+jYAYI (7)
n n

According to Lindenberg and Levy's central limit theorem [61, glI (p) and g2(u) are asymptotically
normal. The means and variances of gI (p.) and g2(A) are the weighted sums of means and variances of
Xn and Yn. The means of gI (p.) and g2(p) are then respectively

g2(1) = D(1)IAn cos npI (8a)
n

and

g2(/) = 4D(1) IAn sin np., (8b)
n

where c (k) is the characteristic function of random variable x, defined as

<D(k) = f g (x) exp (jkx) dx,

where g (x) is the probability density function of random variable x. Furthermore, in deriving the
above expression we have also assumed that the amplitude error 8n has zero mean. If the linear array
is symmetrically illuminated, such that An = An then g2(pu) = 0. The variances of gl(p) and g2(pU)
are, respectively,

r' 2 = 1/2 A, 2(A + B cos2nu) (9a)
n

and

-= 1/2 A, 2 (A-B cos 2np.), (9b)
n

where

A = 1+ a- I - 1D2(l) (9c)

and

B = (1 + a-2)D (2)-&D(1). (9d)

The quantity a, 2 is the variance of the amplitude error 8. The covariance of gi () and g2(pu) is

°12 = l/2 A, A 2B sin 2np.. (10)
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For the symmetrically illuminated array, a-12 is zero. Derivations of these variances are included in
Appendix A. The joint density function of the complex variable P (/A) is

PLgl .,1g2W = 1 92(g(-AI) 2 g2 | (11)
27r-',f(/IO-e 2cr1 2o-2

The probability density function P(g 1,g2) is a generalized noncentral chi-square distribution with
two degrees of freedom. When k, = 0 and a-1 = 0-2, this becomes a Rayleigh distribution. For the
case k, C 0 and oa I = -2, it is sometimes referred to as a Rician distribution. Since the chi-square dis-
tribution cannot be evaluated in a straightforward way, we shall attempt to determine if it can be
approximated.

The variances a-i and a-2 , as shown in Eqs. (9a) and (9b), consist of two parts. The first part is

pi = 1/ 2 A I A ,, (12a)n

and the second part is

P2 = 1/2 B 7, A 2 cos 2np.. (12b)n

The first part is not a function of pA, but the second part is. Since P2 is the sum of cosine functions
except at regions in the vicinity of p. = kvr, pi is much greater than P2. An example is shown in Fig. 1,
on which two sets of curves are shown. Curve 1 shows the or I and 0r 2 values as a function of pA for the
case of a 20-element, 30-dB Chebyshev array. The amplitude error has a variance of 10%, and the
phase error has a normal distribution with zero mean and a 5° variance. One may see that the vari-
ances are independent of p and C-1 = ar 2 except in the regions at p. = ir and p. = 21r . Curve 2 on this
figure shows the case of an 80-element Chebyshev array with 50-dB side lobe design, an amplitude
error of 0.005, and a phase error of 2° rms. Note that -1I and a-2 of curve 2 are considerably smaller
than those of curve 1. This is because there are more elements and a smaller error in the case of curve
2. This will be discussed in more detail later. From this, one may conclude that in the side-lobe region
where p. • 7r one may assume that or I = 2 = Pl The chi-square probability density of Eq. (11) then
becomes Rician, and

-20.

-40

w -60.
C-

-80.

0.00 0.40 0.80 1.20 1.60 2.00
U(u)

Fig. I - Values of alI and o'2 (case 1: 20 element Chebyshev, 30 dB,
Ail - 0.1, a-* - 50; case 2: 80 element Chebyshev, 50 dB, oAf - 0.005,
Aids-21e
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P(R) R- exp [- (R - j 1)
2 ] Io I 2-g| (13)

where R = 9 is the amplitude of the radiation pattern and Io (z) is the modified Bessel func-
tion of zero order.

Radiation in regions in the vicinity of p = kir, which contain the main-beam and grating-lobe
regions and a small portion of the side-lobe region, has essentially a chi-square statistical distribution as
shown in Eq. (11).

Before further discussing the radiation level statistic, let us examine a-1 and a-2 more carefully.

VALUES OF a-1 AND a-2

In the vicinity of pu = k7r, a-1 and a-2 can be approximated by

a' - 1/2 (A + B) I A,? (14a)
n

and
0'22 1/2 (A -B) Y, An2 (14b)

1n

and in other sidelobe regions one has
or2.-._. 22a-2 = A I A,?. (14c)

Each a- consists of two parts. The first part is 2 A,2, which is a function of the number of elements in
n

the array and the illumination function of the array. The second part is A, A - B, or A + B and is a
function of the parameters A and B given in Eqs. (9c) and (9d), which are determined by random array
errors.

In finding the first part of a, for convenience of comparison, let us normalize the array illumina-
tion function An in such a way that

An= 1. (15)

This implies that at the peak of the main beam the radiated field has unit strength (or zero dB). The
summation of A,? is then always less than unity. In the case of a uniformly illuminated array,

I A 2= 1' (16)

where N is the total number of antenna elements. In Appendix B it is shown that no matter how the
illumination function is formed the 1/N factor is its lower bound; in other words,

2>1
S An2> N' (17)

Figure 2 shows some examples of I A,2 for a Chebyshev array. It is evident that in all the
n

different designs the I A,? is close to the factor 1/N and it is always bounded by this factor. This is
n

useful for the estimation of or. One may replace TA 2 by the inverse of the number of elements in the
array for a first-order estimation.
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0-50dB

z :~~~~~-O0 dBan~ ~~ W
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-20.

0. 20. 40. 60. 80. 10.
NO. OF ELEMENTS

Fig. 2 -Values of 2 A 2 for a Chebyshev array with different
n

side-lobe levels

In finding the second part of r-, we consider thc phase error. The probability density function of
the phase error 4 is an even function with zero mean; hence 4) (k) is real. Furthermore, in most cases
of interest, the probability function is most likely concentrated in a very small angle region (less than
+ ir/2). In this case 4) (1) and 4) (2) would be positive and

4)(k) 4)(0)= 1.

When the phase error probability density is an impulse function centered at zero degrees, both
4) (1) and 4) (2) are equal to unity. Under this condition A = B = a-(r8, the variance of the amplitude

error. As the phase error increases, the probability density function p (4) spreads out and 4) (k) is less
than unity; parameter A then increases monotonically as the phase error increases. This is shown in
Figs. 3a and 3b. Figure 3a shows the case for which the phase error density function is normal; Fig. 3b
shows the case for a uniform density function. In the side-lobe region, a- = ALA,,; one may therefore

estimate the value very easily by multiplying this factor by 1/N. Some typical values of the parameter B
are shown in Figs. 4a and 4b for normal and uniform angle error density functions, respectively.

STATISTICAL DISTRIBUTION OF SIDE-LOBE LEVEL

In the main-beam region where pu 0 0 and a-1 X a-2, the radiation level has a noncentral chi-
stuare density function. For this type of density function most of the probability mass concentrates
within an ellipse with major and minor semiaxes of two to three times r-I and a-2, centered at the mean
value k1. Furthermore,

kg >> a-1 or (r 2.

Therefore, for practical purposes one may assume that the radiation amplitude (Ro = 92, is
equal to k, with a probability of unity,

Ro -- k,= qD(1) I An.
n

Since the iliumination function An is normalized, one finds

Ro 4) (1). (18)
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-40.
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0. 4. 8. 12. 16.
INGLE ERROR ST. DEV.

Fig. 3(a) -Values of A: phase error has a normal distribution

-0. aa

m-20.

-30J

-40.
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0 4 8 . 12. 16.
RNGLE ERR0R(MRXIMUM)

Fig. 3(b) -Values of A: phase error has a uniform distribution
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0. 4. 8. 12. 16. 20.
ANGLE ERROR ST. DEV,

Fig. 4(a) - Values of B: angle error has a normal distribution

0. 4. 8. 12.
ANGLE ERROR(MRXIMUM)

16. 20.

Fig. 4(b) - Values of B: angle error has a uniform distribution

In the side-lobe region, there are cases in which pu = ir and in which p. • 'r. Since the region in
the vicinity of A. = '7 is limited to about one beamwidth, we shall first examine the case for p. f Vn.

The probability density function in the side-lobe region where p. PI IT has a Rician distribution.
The side-lobe level is defined as the ratio of the main-beam level to the side-lobe level. Its probability
function is the joint probability function of R0 and R. Since we showed earlier that R 0 F (1) with a
probability of unity, the probability density function of the ratio of R to Ro is the same as that of R
with a scale factor (D(1); that is, R' = R/(D (1), and the density function of R' is then
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P(R') = R2 exp ({[R'(1)]2 2 2fl/2 ar2 10 R 2 R(F i (19)

where

a- = ( 1 = 0-2

and

= (D(1) a, A, cos npi.
n

For convenience, we shall normalize this R' in such a way that

P(S) = 2 exp S2{ 2 (20)

where

S= Rl / A, cos np. (21a)
n

and

o-'= (rl A, cos np|.J (21b)

We notice that DeAn cos net represents the side-lobe level at the angle p. when there is no error
n

present. Therefore, both S and a' in this equation are measured in terms of the designed side-lobe
level. This is more convenient to use than are values in terms of a- or T1.

The cumulative probability of S being less than SL is then

P(S< SL)= fo -2exp( 2 2 o| , 2 dS. (22)

A family of such curves with r-' as parameter is shown in Fig. 5. Each of these curves presents
the cumulative probability that S (in terms of designed side lobe) is less than or equal to a level SL for
a given a-'. Since this curve is presented in such a way that it is not a function of the angle p., these
curves apply to all points in the side-lobe region. Secondly, these curves are normalized with respect to
the ideal side-lobe level. It represents the probability of the deviation of side-lobe level from the
designed value. Although they are not presented explicity as a function of p., they are related to the
side-lobe level. For example, at the peak of a side lobe, the normalized a-' may be only equal to 0.1,
but at a point where the side-lobe level may be 10 times smaller, the normalized (-' then becomes 10
times larger. One can see the difference in the probability distribution for these two cases. This set of
curves is universal. It applies to arrays with different illumination designs, different sizes, and different
errors.

With the aid of this plot, one may easily determine the required error tolerance to achieve a
desired side-lobe level. For example, one may wish to design an array having a 50-dB side-lobe, with
probability of 90% that the side-lobe level will not exceed the designed level by more than 30%. The
curve for a-' = 0.2 satisfies this condition, because for S = 1.3 the cumulative probability is 90%.
Since a-' = 0.2 is equivalent to -14 dB, the required a-2 is approximately 64 dB (50+14). Suppose that
the array has 100 elements. This value of N gives at best 20 dB; one therefore needs an error level that
would yield no less than 44 dB. From Fig. (3a), one sees that an amplitude error of 0.5% (1 a-) and an
angle error of 1.5° (1 a-) will satisfy this requirement.

8
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MI-

2.8 . . .
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41~~~~~. 2. 0 -

NORMRL IZEDI RMPL ITUDE:

Fig. 5 Cumulative probability distribution of normalized side-lobe level
(normalized to the designed value)

The validity of the curves shown in Fig. 5 has been checked by means of computer simulation. In
this simulation, we first computed the probability curve as shown in Fig. 5 for an array of 52 elements
with a 50-dB side-lobe design with given phase and amplitude statistical error distributions. The results
are plotted in Fig. 6. Next, we computed the side lobe level of this array about 10,000 times' Each
time the actual phase and amplitude for each element of the array was generated by the random-
number generator according to -the prescribed distribution. These phase and amplitude errors were then
added to each element in the array. Pattern values were computed in the side-lobe region and normal-
ized to the designed side-lobe level. The statistical distribution of these computations is plotted in Fig.
6 with crosses, and the theoretical curve is also plotted. One may see that these two results closely
coincide.

SIDE-LOBE REGION FOR i r

In the side-lobe region where /. = 1r, 0-l ;e 02, and the probability density function of the radia-
tion pattern becomes a noncentral chi-square distribution similar to that in the main-beam region. The
relationship that k, > > al and 0-2 does not hold; therefore, the approximation used in the main-beam
region cannot be applied. Because the region in the vicinity of tt = 7r is very small (about one
beamwidth), it has been ignored in the past. However, it is worthwhile to investigate the probability
that an undesired high side-lobe may appear in this area.

It was pointed out earlier that most of the probability mass of a noncentral chi-square distribution
concentrates within an ellipse with major and minor semiaxes of two times or, and 0r2, centered at the
mean value go. This situation is depicted in Fig. 7. When a- l= 0 c2, the maximum value of R is

R max Jg '4 + (2a '2) 2,(23)

and when 02 < < (rl

R. - + 2 (24)

This Rmax is the maximum side-lobe level, with a very high probability that no side-lobe level will
exceed this value. When g, > a- I or 0r2, the difference between values of R,,,,, in Eqs. (23) and (24)
is very small. Thus for cases which have a very high probability of a small deviation of the side lobe
from the designed value, the approximation of the noncritical chi-square distribution with a Rician dis-
tribution is acceptable.

9
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Fig. 6 - Simulation result (curve with crosses) compared to a
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In this region, from Eqs. (9a) and (9b),

a2-1 1 (A+B)A2 (25a)
G'1 2 n n

and

l-22 2 (A - B) , As (25b)

where A and B are functions of the characteristic function of phase error and the standard deviation of
amplitude error as shown in Eqs. (9c) and (9d). For a very small phase error both (F (1) and (D (2) are
close to unity, hence A = B, a-1 = 2A, and a-2 0. As the phase error increases, A increases and B
decreases. One may see this from Figs. 3a and 4a (or Figs. 3b and 4b). In this case, one may assume
that B = 0 and a-1 = a-2 = A. The maximum side-lobe levels with a high probability for these two
cases are, respectively,

Rmax = k1 + 4A (26a)

and

Rmax = k, + 2A. (26b)

One may see this intuitively. When the phase error is zero, amplitude errors have a good chance
to line up and induce a higher side-lobe level. On the other hand, if phase errors are introduced the
chance of all amplitude errors to be lined up in the same direction is greatly reduced, hence the Rmax
value has a higher probability of being smaller. If the phase error is further increased, eventually
A =-B. In this case -1 = 0 and a-2 = 2A, and under this condition

Rmax = IF9 i + (4A) 2 (27)

This Rmax value is slightly greater than the one in Eq. (26b). This is the case in which phase
errors are so great that the imaging component dominates and it has a good chance to be lined up and
introduces a higher amplitude error. However, if k, >> A, the error- introduced by the approximation
a-1 = 0-2 = A is small. This is shown in Fig. 8. Curve 1 is the cumulative probability of the normalized
amplitude for a-1 = a-2 with the normalized a-1 = 0.1; curve 2 is for the case a1 = 0.199 and
a-2 = 0.0001; and curve 3 is for the case a-1 = 0.0001 and a-2 = 0.199. The difference in the probability
distribution of these three cases is negligible for practical purposes.

PLANAR ARRAYS WITH CORRELATED ERRORS

For a planar array, if errors in each element are independent, the results of the linear array can be
applied directly. The array pattern of a planar array with independent errors can be represented by

G (p,v) = , A,,(1 + Snm) exp (/¢knm) exp [j(mp. + nv)], (28)
n m

where

p. = (27Td,/X) (sin 0 cos / - sin O0 cos 00),

v = (27rdy/X) (sin 0 sin f - sin 0 0 sin 00),

and 8,, and Onm are the amplitude and phase errors respectively. It can be shown that the a-1 and U2
of this case are given by

II
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3.811 o

0.61

M D. 4A ...m0.2-

2 3
0.0

0.0 1.0 2.0 3.0
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Fig. 8 - Probability distribution at region = 7r, o = 0.1

a-2 - Y A [Cam + Dm cos (2mu + 2nv)], (29a)
a m

a 2 -= them [Cam - Dam cos (2mpA + 2nv)], (29b)
n m

where

Cam = [1 + 2C (D 2 (1)] Am (29c)

and

Dnm e [(1 + a 2 m) Onm (2) - P"2 nm MI)An2m, (29d)

and

a12-h Ad [1(1 +ar2m) (Dnm(2) - (D (1)2IAm sin (2mI + 2nv). (30)
n m

Comparing these equations with Eqs. (9a), (9b), and (10) one may see that they are almost identical.
Therefore, all results obtained for the linear array can be applied directly. Since a planar array usually
has more elements than a linear array, a-i and a-2 in general are smaller. It therefore can tolerate larger
errors with less degradation. Unfortunately, in most cases errors in each element are not independent.
They may be correlated. For example, a planar array may be fed by rows and columns. The same error
from the feed network may appear in every element in an entire row (or column) or in many cases all
elements of a subarray may contain the same error due to mechanical reasons. To examine this effect,
we shall first examine a case for which the same error appears in every element of a row (or column) in
an array. Besides this correlated error, there are also independent errors in every element. The array
pattern can then be assumed to have the following form:

G (p,v) = ,(1 + 8,,) exp (0,,) ,Anm (1 + inm) exp (Qonm) exp [j(mp. + nv)], (31)
n m

where 8n and 4m,, are, respectively, the amplitude and phase errors which appear in the nth row. Appen-
dix C shows that

2?= E + i (32a)

12
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and

a2= E-F, (32b)
where

E + 2/21 [(1 + a, 2) (I + (12D)1 2 4 (1) 4)nm1)] An2m
n m

+ %/2 (1 + a 2) - (D2 (1)] (D2m (1) UnmAAns Cos (m-S)lz (32c)
n m S

and

F = 1/2 n [(1 + nmD) (1 + n 4), (2)4),, (2) - n nm
n m

* Anm cos (2mli + 2nv) + '/2 [(1 + a-n,) 4)n (2) - 4n)()]
n m s

Sam (1) AnmAns cos [(m+s) A + 2nvI. (32d)

In the derivation of Eqs. (32), it is assumed that the amplitude errors An and 8 nm have zero mean
and their respective variances are a-,, and unm . In the formulation, we also assumed that the amplitude
error consists of two levels 8n and Semi and the total error is (1 + 8n) (1 + 8nm). The mean of this
error is zero; however, the composite variance is given by

(I + (r 2) (1 + -m)= 1 + o- 2 + a-r2, + ar 2 a2-. (33)

Let the total amplitude variance oa be given by
a-2 = + 2 2 o- 2 (34)

If both aOn and a-nm are small, the total variance o 2 can be viewed as the sum of the individual vari-
ances a- n and a-,m . Let the total phase error 4 be the sum of the two phase errors an and Ownm then
the characteristic function of 4) is

4 = On (l)4)(nm(1). (35)

Equations (32a) and (32b) consist of two parts, similar to Eqs. (9a) and (9b) in the case of a
linear array. The terms which involve cos (2mIL + 2nv) and cos [(m + s) 1 + 2nv] can be ignored
except perhaps in regions very close to the main beam and where 2mjA + 2nv and (m + s),u + 2nv are
integer multiples of 21r. These regions are only one beamwidth in extent, and their effect may be
ignored for the same reason that was used in the case of a linear array. We hence have

a-j2=a-2 /2 % [1 +MI2 A-M(1)JA,?, + hi , [(1 +a-<-),(1)J IG, )12, (36)
n m a

where

IG,, I2=.a2m (1),FAnmAas cos (m - s),I, (37)i s
and ,rn anm - i n and 4)nm are replaced by a- and 4) as shown in Eqs. (34) and (35).

The mean radiation pattern of the linear array of the nth row is

G () = (Dnm(1)IAnm exp (jmAu), (38)

therefore I G (A)2 is its power pattern. The a-, and a-2 consist of two parts. The first part, 1/2 B
atm

[1 + a-2 - 4)2(01] A,?2,, is identical to that of an array with uncorrelated errors when both the correlated

13
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and uncorrelated errors in each element are taken into account. The second portion, 1/2 I.
a

[(1 + a--n2(1)] I G (.) 2, has a value similar to that of a linear array with the illumination weights
A,2 replaced by the power radiation pattern function I G (A) 12. It is interesting to note that when pu = 0,
I G (A) 12 has its maximum value. In other words, at ,u = 0 the correlated errors have the strongest
effect on a- and the array patterns would most probably deteriorate more at IA = 0 in the ,u, v domain.
For example, a column and row fed array, as discussed in this section, has rows in the x direction and
columns in the y direction. Elements in each column have a' common error. If the array beam is
steered at the broadside (00 = 0), then ,.k = sin 0 cos 4, and the maximum degradation will occur in a
plane along the y direction (the E plane), when 4 = 90°. However, if elements in each row have a
common error, the worst degradation may occur at v = 0, along the x direction (the H plane). Under
this condition,

|G, A) l2
-P , Anm)2. (39)

n m

If the illumination coefficient Am values are normalized such that

z A, A~m = 1, (40)
n m

one can show that

I Gm (u) 12 (41)

where N is the total number of rows which have correlated errors. One may hence conclude that:

* al-= ( 2

* Both a1 and a-2 consist of two parts, with the first part due to total errors (including both
correlated and uncorrelated) at each array element (a,,) and the second part due to the correlated error
fed to each row (or column) (a ). The a- is the root sum square (RSS) of these two parts.

* Both <at, and ar, are functions of both the array element errors and the illuminations. The
effects of amplitude and phase errors on the a- value are identical to that of the case of a linear array.
Curves shown on Figs. 3a and 3b can be used to estimate this value. The array illumination can be
approximated by the number of elements in the array (for a- ) and the number of rows (for a c) for the
correlated errors.

The covariance a12 between real and imaginary parts of the array pattern is

a12 = / S [(1 + a-i) (1 + a (2)4),m (2) - 4)(1)4)nm(1)]Anm sin (2m/i + 2nv)
n m

+ %/2 ,i~ [(1 + a-2)4)(2) - n4)(1)IrA,,mAms sin [(m + s),u + 2nvl. (42)
n m s

When the array is symmetrically illuminated and the phase center of the array is taken at the center of
the array, one may show that 012 = 0. Therefore, the distribution of array patterns of a planar array is
Rician as shown in Fig. 5. The value of a- is the RSS of crot and a- c. The above results can be applied
to an array which is fed by subarrays and the correlated error appears in each subarray. In this case,
one has to replace the parameters ,u and v with functions of /A and v.

14
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CONCLUSIONS

In this report, we have shown the following:

1. The amplitude distribution of the radiation pattern for both a linear array and a planar array is
Rician. A set of universal curves for such distributions is shown on Fig. 5. The curves are presented
for different a- values and are normalized to the mean pattern value. They thus read directly in terms
of cumulative probability of the degradation of the side-lobe level.

2. The (a value for both linear arrays and planar arrays has a similar form, which is a function of
errors and array illuminations. The effect of errors is plotted in Fig. 3 for different error distributions.
Figure 3 also shows that the illumination function of the array can be approximated by the number of
elements.

3. For a planar array with correlated errors the variance ar is the RSS of a,-I and or,. The variance
aIL takes into account the error in each element (including both correlated and uncorrelated errors) and
a-, is due to the contribution of correlated error in a subarray. Both a-r and (r, are functions of the
errors and the illuminations. However, at, is also a function of the subarray pattern in which the errors
are correlated.
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Appendix A

DERIVATION OF VARIANCES FOR A LINEAR ARRAY

Define a complex random variable

z = X +jy; (Al)

then

E{Iz - E(z) 2) = a-2 + 2 (A2)

where

a-2 = E{[x - E(X)]2, (A3)

a2 = E{t y - E(y)12 ), (A4)

and

E{[z - E(Z)]2} -Ia- C-2+ 2ja12, (AS)

where

-12 = E{[x - E(x)] [y - E(y)]}. (A6)
Solving Eqs. (A5) and (A2), one gets

2ar-2 -- E{Iz - E(z)12} + Re E{[z - E(z)]2), (A7)

2a- 2 = E{|z- E(z)12 1-Re E{[z- E(Z)]21, (A8)

and

2r12 - Im E {[z - E(z)]2 ). (A9)

For a linear antenna, the pattern function is

G() = 0 Aa (1 + 8a) e"' ej`,- (A10)
n

E (G) = (D(1) A,An ei, (All)

IE(G)12= 4)2(1) yAnAm eJ(n-m) (A12)
n m

[E(G)1 2
-D2(1) Z1,AnAm eJ(n+m)1, (A13)

n m

E{IG 12)= 7AnAm 4)2(1) eJ( m)1 + IA 2 (1 + a2), (A14)
n~m n

nam

where a-2 is the variance of the amplitude error 8n,

E{IG - E(G)1 2}= E{tZ12- IE(z)12)

=An2 (1 + (a2) - IA 2 42(1), (A15)
n n

E((G)2 1 = S 4)2(1) eJ(n+im)s + YAn2 (1 + a-2) 4(Z) WeJni, (A16)
n~m n

16
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E{[G - E(G)] 2} = E{(G)21 - [E(G)12

= [(1 + a-2 ) 4) (2) - 4)2(1)] ej2nA,

a-2 = 1/2 [1 + a2 - 4)2(1)] IA 2 + 1/2[(1 + a-2) 4) (2) -_ 42(1)]1 A 2 cos 2ng, (A17)
n n

a- 2 = 1/2 [1 + (a2 - 4)2(1)] IA 2 - '2[(1 + a-2) 4) (2) - 42 (1)1 IA2 Cos 2nA, (A18)
n n

and

a-12 = /2 [(1 + a-2) 4) (2) - 4)2(1)] IA 2 sin 2nEU. (A19)
n

17



Appendix B

PROOF THAT THE ILLUMINATION FUNCTION IS BOUNDED

Cauchy's inequality is given by [B1]

K I Xj Yj| < IN XKI1 y 21.

Let Y1= 1, then
(Xj)2 < (IX2)N,
i i

or

1 S.___-I I
N ,X,)2'

When Xi = 1,

_ _ _ _ 1

(E X)2 N'

therefore

is bounded.
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Appendix C

DERIVATION OF VARIANCES FOR A PLANAR ARRAY

For the noncorrelated case,

GG(uv) = I (1 +X8m) exp exp i[j(mjA + nv)] Aam,
n m

E [G (U2v)]= Y m (1)Anm exp [j(mra + nv)],
n m

IG(P')1 2 = , YI AI mArs (1 +8am) (1 +8rs) exp Li (<nm -am )I
n m r s

exp {j[(m - s) + (n - r)v,

12]~ ~ ~ a rs m"(1) ex 'A2U [IGWuy)12] = S S z A SAXM~rm exp j2[m- s) + (n - r)v} + n (1 m
n m r s n m

n F• r or m ;d s

{'[G(ILv)]1 2 " zzS S<P"2m (1)AnmArs exp IjI(m - s), + (n -r)v],
n m r s

1I + a-22 E[IGWu}v)I] |E[GWuSV)I

= ,,[1 + ( 2m - j 2m (1)],
n m

[G (uV )] = (1+8 nm) (1 +8 rs) exp Li Wm +0 rs)] exp [L (m + S) / + (n + r)v],
n m r s

,{[G u,v)]2) I I, I, lyanmArso"m (1) exp LI(m + s)IL + (n + r)v]
n m r s

n • r or m * s

+ l~lL (1 +a-"2m) 4) nm(2)A,2m exp [(2mA + 2nv)],
n m

tE[G(uV)]12 = 7IyIAnmArsjD 2 (1) exp [j(m + s),a + (n + r)v],
n m r s

2 2 +0 )2() a-1 U-a2 = n, [(1 + a-2m)4)m (2) - nm(1)] Anm Cos (2mAU + 2nv),
n m

a-12 = ½ SEt(1 +anmm)4)nm (2) _nm (1)] Anm sin (2mg + 2nv),
n m

a-2= ½h I [Cnm + Dnm cos (2mjA + 2nv)]
n m

and

a 2 ½h I [Cm - Dnm cos (2mjA + 2nv)]
n m

where

(C12c)

and

(C12d)
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(C1)

(C2)

(c3)

(C4)

(CS)

(c6)

(c7)

(C8)

(C9)

(C10)

(C11)

(Cl2a)

(C12b)

C - [I + (r 2 - 4) 2 2nm nm (1)) Anm

D = [(I + (r 2 ) 4) - (D2 2nm nm (2) nm (01 Anm.
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For the case of correlated errors,

GIu V) = I (1 +8,,) exp (joa) 2 (1 + 8,,,,) exp (j0,,,,n) A,,,n exp Li(mrA + nv)1,
n m

E[GGiv)] = I T4 ,(14) nn(1)Am exp I (mu + nv)1,
n m

IGQtv)12 = Y, 1 + 8,) (1 + 8,) exp [j(V0, - 4r)] 1(1 + 8,,) (1 + 8r,)
n r m s

* AnMAr exp 1i(m,,, - 0,rs)] exp U(m - s) / + (n - r)v],

E[IG (u,v)12I =

IE[G(u V)]12 =

1r4),(1) 1 140 (1) AnmAr, exp f(m - s)A + (n - r)v]
n r m S
nar m s

+ z (1 +a-,,2) z z ),?,,, (1)An,,mAns exp Li(m - s)pu + I7 n (1)
n m S n r

mos atr
* , D (I)AnnArm exp [j(n - r)v] + (1 +a2) (1 +a.2 ) A ,,

m n m

7,11J:<:An. rsO"2(l) n2m(l)An.Arexp (j[(m - s)tL + (n - r)v]},
n m r s

(T 2 +rJ.22= jj[(1 + r "2) (I + a 2 ) -<p2 (lbm(1)] 2n2m
n m

+ [(1 + r-n2) - 4) ,(1)]4)D(1) <: AnmAns cos (m -S*
n m s

[G( (V)]2 =

E{[G(uV)] 2} =

0(1 +88n) (1+8,.) exp 1j(6),n +4r)] 11 +8,,m) (1 +8,s)
r r m s

- exp Li(Oknm + 4 rs)]AnmArs exp {j[(m + s)/I + (n + r) vii,

S 2n2 (1) n m (l)A,,A,m exp {j[(m + s)I1 + (n + r) vI)
n r m S
n;6r m ;S

+ z (1 +a-,n2)4,n(2) D 2nm AnmAns exp {i[(m + s)O + 2nv]}
n m s

m S s

+ n2 (1) nmAnmAr exp U1(2mg + (n + r)vI
n r ma-,r

+ I [(1 +a (1trn 2 ) (1n)(2)0m(2]Anm exp [I(2mA + 2nv)],
n m

{E[G(uV)1} 2= n (1) 4n~m(l)AnmArs exp {j[(m + s),u + (n + r)v },
n v m s

o2 2 -2(I+o2cr2a2 =,,[1+rn) (1 )4 + a"t (2) (Dm (2)
n m

- n 4),(1)4n M(1)] Anm cos (2mu + 2nv)

+ zz [(1 + o-P) D,, (2) 4nm() nmAnmn
n m s

*cos[(m + s) ,u + 2nv]1,
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(C19)

(C20)
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a-12 = '/2X) [(1 + a-2) (1 + a-2 ) 4)(2)4) (2)- 4)2(1)4)2(1)10'12 n ~~~fnm f i n f inm
inm

*m 2sin (2miu + 2nv) I

ams~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.+ h t~,[1+ aT 2) !n(2- 2(11.
n m s

nm 4', (l)AnmAns sin [(m + s) ,u + 2nv], (C23)

a-? = E + F (C23a)

and

or 2 = E-F, (C23b)

where

E = h [(1 +2-,n) (1 +2 a1)m)- 4)() )2m (1)] A,2?

n m

+ ' £ [(1 +a-n2) - 4)2 (1)]4)P,,(1) 2 £AnmAns cos (m-s),u (C23c)
n m s

and

F 'hj [(1 +a- 2) (1 +-, 2m) (D,,(2)4) nm(2) - (D, (1) 2m (1)] An2m cOs (2 m/ + 2nv)
n m

+ 'h II [(1 + r-,2) <pn(2)(-D 2(1)]42m(1)AD mAas cos [(m + s),u + 2nvl. (C23d)
n m s
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